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Abstract— The paper presents an overview of recent research on the Particle Swarm Optimization (PSO) algorithm parallelization on the 
Graphics Processing Unit for general-purpose computations (GPGPU). This survey attempts to collect, organize, and present reports in the 
area published since 2007 in a unified way. In order to organize the literature a classification by objective functions and PSO variants is 
proposed. The paper also compares experimental results taking into account the most popular factor, the calculating acceleration ratio 
called speedup. Results of the survey are given in a very compact and comprehensive way and could be used as a guide in this area. As a 
summary, conclusions from categorization, a comparability problem, and possible research areas are discussed. 

Index Terms—General-Purpose computing on Graphics Processor Units, NVDIA CUDA, Particle Swarm Optimization 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE Particle Swarm Optimization algorithm is a popular 
tool for continuous domains exploration presented for the 
first time in [1]. The main PSO attributes are: 1) it finds a 

satisfactory solution for complex and large-scale problems 2) it 
converges fast 3) it is easy to implement 4) the number of 
adjustable factors is relatively small. The major problem with 
the practical PSO implementation is its runtime especially in 
multidimensional optimization tasks. 

One of the most promising choices to speed up the 
computational process is the use of parallel implementations. 
All algorithms based on the population/swarm are ideally 
suited for parallelization, including PSO. Starting in 2001 
developers can use GPUs, which are high-performance 
parallel accelerators. A PC equipped with a programmable 
graphics unit can be perceived as a dual processors device, 
where depending on the calculations, tasks can be split 
between GPU and CPU. 

Due to the wide availability, programmability, and high-
performance of consumer level GPUs, NVIDIA corporation 
invented the Compute Unified Device Architecture (CUDA) 
platform and implemented it on GPUs they produce. This 
programming model becomes very popular because it eases 
the GPUs code development. The CUDA platform allows 
writing GPU code in C functions called kernels. Many GPU 
threads in a Single-Instruction-Multiple-Thread (SIMT) 
fashion execute each kernel. Each thread executes the entire 
kernel once [2]. 

GPGPU popularity as a platform for parallel 
implementation of population based meta-heuristic 
optimization methods resulted in two publications presenting 
a summary of recent results in the area. Kromer et al. [3] 
presented a general description of twenty-three GPGPU PSO 
implementations from the CUDA programming point of view. 
A summary of optimization problems, data organization and 

most interesting results and problems were given. The second 
report by Kromer et al. [4] provides a brief overview of the 
latest state-of-the-art research on the design, implementation, 
and applications of parallel GA, DE, PSO, and SA-based 
methods on GPUs. The authors shortly described all presented 
meta-heuristics and gave a detailed description of the parallel 
CUDA programming model. They described eighteen PSO 
GPGPU implementations between 2012 and 2014, giving 
information about: the application area, the most important 
results and when possible the graphic card used. Both Kromer 
et al. surveys lack a method for literature classification or 
organization. 

The objective of this paper is to collect, organize and 
present publications on GPGPU PSO implementations. In 
order to organize the growing amount of literature in this 
field, the paper presents a categorization of the different types 
of GPU PSO implementations. Categories come from the 
implementation diversity (standard benchmark functions or 
real-world optimization problems) and concern PSO 
algorithm variants. Other attributes, which helped in the 
papers’ organization, were chosen in order to compare 
experimental results (runtime, speedup ratio, and 
effectiveness in the optimum discovery). 

This paper is organized as follows. The next section is a 
brief introduction to the particle swarm algorithm and 
indicates categories coming from its different variants. Section 
3 describes objective functions applied in the literature. 
Section 4 presents emerged categories used in the paper 
classification. Section 5 shows the literature analysis and 
discussion. The conclusions describe the comparability 
problem and further research areas. 

2 PSO ALGORITHM VARIANTS  
This section briefly describes the PSO algorithm in his 
standard version. Subsections present different PSO variants 
distinguished based on the velocity update rule, 
neighborhood and number of swarms. PSO variations will be 
used as categories in the literature organization. 

T 
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2.1 Standard PSO 
The main inspiration for PSO was the social behavior of 
biological organisms seeking for food. In the PSO classic 
algorithm particles move through the search space and they 
are attracted by the best particle in the swarm and the best 
solution they individually have found in order to find the 
optimum [5], [6]. 

The optimization problem solved by PSO in continuous 
domain is to find the minimum value in function 𝑓:ℛ𝐷 → ℛ, 
which is the objective function, or cost function, of an 
application problem and D is the problem dimensionality: 

 minimize 𝑓(�⃗�) (1) 
The vector �⃗�  contains the problem’s decision variables. 

Although (1) is considered an unconstrained optimization 
problem, in practice only solutions belonging to a subset of ℛ𝑛 
are considered: 

 Ω = [𝑥1𝐿 ,𝑥1𝑈] × [𝑥2𝐿 ,𝑥2𝑈] × ⋯× [𝑥𝐷𝐿 ,𝑥𝐷𝑈] (2) 
where: 𝑥𝑑𝐿 is the lower and  𝑥𝑑𝑈 the upper bound of the search 
space among dimensions 𝑑 = 1,2, … ,𝐷. 

The PSO algorithm works on the particle’s population of 
size s. Each individual particle i is a potential solution to an 
optimization problem and is given by the position vector 
x�⃗ i = (xi1, xi2, … , xiD), where i = 1,2, … s. The swarm is initialized 
by random positions drawn from a uniform distribution 
within the search space Ω. Each particle keeps a memory of its 
own best position, it individually has found, called personal 
best p�⃗ i = (pi1, pi2, … , piD). This position is only updated when 
the particle’s new position at step t yields a better function 
value than the previous personal best in step t − 1: 

 �⃗�𝑖(𝑡) = � 𝑥𝑖(𝑡)
�⃗�𝑖(𝑡 − 1)

if 𝑓�𝑥𝑖(𝑡)� < �⃗�𝑖(𝑡 − 1)
otherwise

 

(Er
ror! 
Boo
km
ark 
not 
defi
ned
.3) 

 
The global best position is the position with the smallest 

fitness value of all positions in the neighborhood in current 
step t:  

 �⃗� = argmin𝑓(𝑝𝑖), 
  𝑝𝑖∈𝑃    

(Error! 
Bookmark 

not 
defined.4) 

where P is the set of personal best vectors from the given 
neighborhood. 

Particle  i  moves from its current position to a new one 
along velocity vector v�⃗ i = (vi1, vi2, … , viD) , using 
adjustingjutingthe position update equation: 

 𝑥𝑖 = 𝑥𝑖 + �⃗�𝑖 (Error! 
Bookmark 

not 
defined.5) 

The velocity is first updated as: 

�⃗�𝑖 = �⃗�𝑖 + 𝜑1𝑟1 ∘ (𝑝𝑖 − 𝑥𝑖) + 𝜑2𝑟2 ∘ (�⃗�𝑖 − 𝑥𝑖) 
(Error! 

Bookmark 
not 

defined.6) 
where operator ∘ denotes a Hardmard product and 

�⃗�𝑖 denotes the velocity vector of particle i 
𝑥𝑖 denotes the position vector of particle i 
𝜑1 is the cognitive acceleration coefficient 
𝜑2  is the social acceleration coefficient 
𝑝𝑖 denotes the personal best position vector of 

particle i 
�⃗� is the best position vector found in the entire 

neighborhood 
𝑟1and 𝑟2  are vectors with pseudo-random numbers 

selected from a uniform distribution 𝑈(0,1)  at 
every update. 

Each particle’s velocity is randomly initialized to lie within 
�vdmin, vdmax�  in every dimension d . This velocity clamping 
allows particles to step through the same maximum 
percentage of the search space. Without this, particles were 
prone to shift outside Ω. The update process is presented as 
the Algorithm 1 [6]. 

 
Algorithm 1. Basic Particle Swarm Optimization 
Initialize randomly x�⃗ i and v�⃗ i 
for each step t do 
 for each particle i = 1,2, … s do 
  Evaluate particle fitness f(x�⃗ i) 
  Update personal best p�⃗ i  
  Update global best in the neighborhood g�⃗ i 
 end for 
 for each particle i = 1,2, … s do 
  Update position x�⃗ i using equation (5) and (6) 
 end for 
end for 

 
The algorithm can be allowed to run either for a number of 

iterations expected to produce a good solution or until a user-
specified criterion or a threshold is reached. 

2.2 Velocity update 
PSO can be distinguished based on differences in the velocity 
update rule (equation (6)).  

The PSO with an inertia weight (w) is a method of adjusting 
the previous particle velocities to the optimization process: 

v�⃗ i = wv�⃗ i +φ1r⃗1 ∘ (p�⃗ i − x�⃗ i) + φ2r⃗2 ∘ (g�⃗ i − x�⃗ i). 

(Error! 
Bookmark 
not 
defined.7) 

The inertia weight can be static or can be changed 
dynamically. When w is well adjusted the swarm has a grater 
tendency to constrict in the area containing best fitness and 
explore this area in detail. 

A canonical PSO is another popular rule [5], [8] where the 
velocity is update as follows: 

�⃗�𝑖 = 𝜒(�⃗�𝑖 + 𝜑1𝑟1 ∘ (𝑝𝑖 − 𝑥𝑖) + 𝜑2𝑟2 ∘ (�⃗�𝑖 − 𝑥𝑖)). 

(Error! 
Bookmark 

not 
defined.8) 

χ is known as a constriction factor and is derived from the 
existing cognitive and social coefficients: 
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𝜒 =
2

�2− 𝜑 − �𝜑2 − 4𝜑�
, 

 𝜑 = 𝜑1 + 𝜑2. 

(Error! 
Bookmark 

not 
defined.9) 

The constriction factor balances global and local searches. It 
was found that when φ > 4 the swarm moves quickly and 
converges to the best found position in the search space. 

Besides the three presented velocity update rules there are 
many other modifications. Some of them will be mentioned 
further in the paper when reports from their application will 
be discussed. Most of those variations were presented once in 
the entire collection. A single occurrence in the literature is not 
sufficient to design a category because categorization ought to 
introduce a generalization. 

When the velocity update rule is the category/class in the 
designed reports organization, three attributes are 
distinguished: 1) standard PSO, 2) PSO with the inertia 
weight, and 3) canonical PSO. 

 

2.3 Neighborhood topology 
A neighborhood in PSO is the subset of particles in which each 
particle is able to communicate with each other, in order to 
determine the best particle denoted as g�⃗ i [7], [8]. 

Gbest model or global topology is defined as a 
neighborhood topology composed of the entire population. In 
this model the P vector from equation (4) is composed of all 
personal bests in the swarm P = {p�⃗ 1, p�⃗ 2, … , p�⃗ s}. This topology is 
also known as a star because each particle is connected to all 
particles in the swarm (Fig. 1). 

Lbest model or local topology is a neighborhood topology 
comprising some number of adjacent neighbors in the 
population. One of the most popular local topology is the ring 
model (Figure 1), where the P  vector from equation (4) is 
composed of previous, the particle and the next particles 
personal bests P = {p�⃗ i−1, p�⃗ i, p�⃗ i+1}.   

In a global neighborhood, information is constantly 
distributed to all particles. When solving some optimization 
problems this resulted in quick attraction to the same region in 
the search space. Local topologies were used to prevent the 
PSO from stacking in a local optimum.  

 

 
Fig. 1 The star (left) and ring (right) topology [5] 

Whenever the neighborhood (difference in particle 
connections) is the category/class in the designed reports 
organization, two attributes are distinguished: 1) gbest and 2) 
lbest. 

2.4 Multi-swarms PSO 
Standard PSO is a one-population algorithm. A common 
procedure in all optimization heuristic methods is population 

multiplication. The GPU parallelism encourages multi-swarm 
models, but they must solve the swarms’ communication 
problem.  

In this paper, the author made an assumption to avoid a 
more detailed categorization than distinguishing one and 
multi-swarm PSOs. The argument behind this decision is that 
multi-swarms’ implementations mainly change data 
structures. The data structure manipulation is connected 
closely to neither the objective function nor PSO variants, 
which were chosen by the author to perform classification. 
The data structure is a matter of parallel implementation i.e. 
CUDA kernels and threads coding. The PSO parallelization on 
GPUs is a very interesting but also a broad topic. If included 
into this survey, it will make classification complex and vague.  

When the number of swarms is the category/class in the 
designed reports organization, two attributes are 
distinguished: 1) one and 2) multi. 

 

2.5 Synchronous and asynchronous PSO 
In the Algorithm 1. all particles’ personal bests and global 
bests within their neighborhood are updated first. Then the 
particles are moved. These are called synchronous updates as 
opposed to asynchronous updates, where once the personal 
best is updated the particle is immediately moved (Algorithm 
2). 

 
Algorithm 2. Asynchronous PSO 
Initialize randomly x�⃗ i and v�⃗ i 
for each step t do 
 for each particle i = 1,2, … s do 
  Evaluate particle fitness f(x�⃗ i) 
  Update personal best p�⃗ i  
  Update global best in the neighborhood g�⃗ i 
  Update position x�⃗ i using equation (5) and (6) 
 end for 
end for 

 
In consequence each particle can be moved in no special 

order and the swarm moved immediately in the area of newly 
found optima. 

When the global best update step is the category/class in the 
designed reports organization, two attributes are distinguished: 1) 
synchronous and 2) asynchronous. 

3 OBJECTIVE FUNCTIONS 
The PSO algorithm solves different optimization problems. As 
described in section 2.1, it could be a process of some function 
(the objective function) minimization in the continuous 
domain. Problems from discrete domains can also be solved. 
In this section, GPGPU PSO implementations are 
distinguished based on optimization problems they were 
applied to.  

The objective function is a mathematical form of the 
optimization goal. Its properties determine the behavior of the 
PSO algorithm. Functions may be expensive or inexpensive in 
terms of time per function evaluation. Test functions or 
optimization problems have a great effect on the PSO 
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performance and must be considered when tuning and 
running the algorithm. 

In many experiments presented in the literature standard 
test functions in continuous domain are used. Benchmark 
functions are intended to share interesting properties with 
real-life functions while being inexpensive in experimentation. 
These functions are divided into categories [5]. 

Test functions are listed in Table 1, where columns are 
labeled as follows:  

• F – a short function name 
• Name – long function name 
• E q - equations’ locations in the literature  
• Domain,  
• Min - coordinates of the global minima  
• O - value of the global optima 
• C – function’s categories: S - simple, unimodal 

problems, and C - highly complex multimodal 
problems with many local minima. 

Table 1 Standard benchmarks used in the litereature from the collection 
under study  

F Name Eq Domain Min O C 

fSp Sphere/Parabola [5] (-100,100) 0 0 S 
fEl Ellipse [15] (-5, 5) 0 0 S 
fgRo Generalized Rosenbrock [5] (-30,30) 1 0 S 
fSw1.2 Schwefel 1.2, Rotated 

hyper-ellipsoid 
[5] (-100,100) 0 0 S 

fgRa Generalized Rastrigin [5] (-5.12,5.12) 0 0 H 
fgGr Generalized Griewank [5] (-600, 600) 0 0 H 
fSw Schwefel [21] (-500,500) 420 0 H 
fgSw2.
6 

Generalized Schwefel 
2.6 

[5] (-500,500) 420 0 H 

fAc Ackley [5] (-32,32) 0 0 H 
fP8 Penalized Function P8 [5] (-50,50) -1 0 H 
fP16 Penalized Function P16 [5] (-50,50) 1 0 H 
F – short name, Eq – reference to the equation, Min – minimum position, O – 
minimum function value, C – category: S – unimodal, H- multimodal 

 
These test problems are widely used and especially 

designed to test different properties of optimization 
algorithms.  

Except test functions, other benchmarks or real-world 
optimization problems are presented in the literature. When 
the objective function is the category/class in the designed 
reports organization two attributes are distinguished: 1) 
standard global optimization test functions and 2) other 
benchmarks and real-world optimization problems. 

4 CATEGORIES 
Previous sections presented possible GPGPU PSO 
implementations categorization based on the problem they 
solved and on the algorithm variation. Bringing together all 
previously presented classes the following classification 
schemata is proposed (Fig. 2). There are two categories: 1) 
Objective function and 2) PSO variant. PSO variant is divided 
into four subcategories: 1) velocity update, 2) neighborhood 
topology, 3) number of swarms and 4) global best update. 
Each category and subcategory has a set of attributes (bubbles 

in Fig. 2). A GPGPU PSO can be one of 48 different types. The 
diagram downward tracing obtains a specific PSO type. For 
example, the path: “standard test function  inertia weight 
 lbest  one population  synchronous” is one of 48 
possible types.  

5 LITERATURE ORGANIZATION 
[3] and [4] described 23 reports on GPGPU PSO 
implementation and do not propose any reports organization. 
Unlike [3] and [4] this study demonstrates different and 
synthetic review. The outcome is a structured catalog in the 
form of three tables for anyone looking for the research 
summation in the area. The presented collection consists of 45 
different reports on GPGPU PSO implementations. The very 
first publication in the area was published in 2007 and the last 
in 2014.  

In the first publication [9] particles were mapped into 

textures on a graphics card and calculated in parallel without  
CUDA support. This implementation differs from other 
implementations on CUDA and will not be further analyzed.  
[53] publication data are incomplete because of the restricted 
access to the paper and will not be analyzed as well. This 
reduces the total number of references in the collection to 43.  

The entire collection was split into three subsets. The key to 
assigning to adequate subset was categories.  The first subset 
(Table 2) contains all publications presenting PSO tested on 
standard benchmarks and using any of the three attributes in 
the ‘velocity update’ subcategory (Fig. 2). The second subset 
(Table 3) stores all reports describing PSO tested on other 
benchmarks and using any of the three attributes in the 
‘velocity update’ subcategory (Fig. 2). The third subset gathers 
all the publications that uses different than the standard, 
inertia weight or canonical velocity update rules.  

Summing-up, from all 43 collected papers and reports on 
GPGPU PSO implementation: 

• 19 (44%) tested on standard benchmarks and used PSO 
defined variants (first subset - Table 2) 

• 14 (37%) tested on other benchmarks and used PSO 
defined variants (second subset Table 3) 

• 10 (23%) used modified velocity update rules (third 

Fig. 2 A diagram of categories designed for the literature on GPGPU 
PSO classification 
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subset - Table 4). 

5.1 Guidelines on table reading 
Table 2 presents the following information:  

1. The first author name and a reference.  
2. A publication year. 
3. If used, an algorithms’ acronym. 
4. PSO variant (V - velocity update rule, N – 

neighborhood topology, S – synchronization type, M – 
number of swarms).  

5. Swarm size – number of particles used in experiments, 
for example, range 400-2800 means that beside 400 and 
2800 some other sizes in-between were also tested. 

6. Short name of standard benchmarks used in 
experiments. For example, ‘fgRa (-10,10)’ means that 
the generalized Rastrigin function was tested in a 
domain other than given in Table 1. The word shifted 
indicates that some constant value is added to the 
objective function in order to move the global optimum 
location. 

7. Benchmark dimensions used in experiments, for 
example,'30, 60, 120 denotes tests on functions with 30, 
60 and 120 arguments. 

8. Runtime range (min-max) in seconds, for example, 
notation '<1-100' means that tests performed shorter 
than a second and not longer than 100 seconds. < or > 
symbols denote inability to present a precise value, 
because they were retrieved from charts.    

9. Speedup (Sup column) (the number of times the 
GPGPU PSO implementation runtime was shorter than 
sequential PSO runtime) range. 

10. The function name and conditions if the global 
optimum was found. For example, fSp (D<100) denotes 
that the global optimum was found in Sphere function 
but only if it had less than 100 arguments. If is only the 
name given e.g. fAc, then the global optimum was 
every time found. 

11. Graphic card used in experiments. 
In Table 3 columns from ‘Reference’ to ‘Swarm size’ include 

the same data as in Table 2. The column titled ‘Objective 
function’ describes the optimization goal. The next column 
called ‘problem description’ describes the optimization problem 
that was tested with GPGPU during experiments. In many 
cases, PSO is only an element of some complex system. In the 
collection cited in Table 2 most parallel implementations were 
compared to a sequential PSO and then speedup ratio in the 
‘Sup’ column was reported. There was only one exception – 
[37] – where runtime is given instead. In the last column, the 
graphic card name is presented. 

Table 4 collects reports, which do not match the designed 
categorization. It contains reports presenting rare or new ideas 
of the velocity update rule modifications and three 
publications on PSO applied in the discrete domain. The 
‘variant’ column describes velocity rule modifications. The 
‘name’ column presents the algorithm’s name. The four next 
columns contain the same information as in Table 3. 

5.2 General information 
The beginning of CUDA usage in PSO parallelization (year 

2009) abounded in standard benchmark testing (5 from 6 
reports). The main goal was to demonstrate acceleration and 
all experiments confirmed the speed up. Disparities in 
speedup values (from 1 to 270) are surprising. Experiments 
show e.g. [10], [12] that the speedup depends proportionally 
on the dimensions and swarm sizes. [10] and [20] show that by 
changing swarm size, test dimensions, and graphic card 
without other improvements it is possible to gain a threefold 
speedup increase. Speedup variations are also related with the 
data structures, memory usage and kernels design in CUDA. 
The CUDA implementation details are not discussed here 
therefore the exact reasons for speedup differences are not 
known.  

The peak of research activity in the subject falls in 2012 (Fig. 
3). The downward trend could be a sign of ideas exhaustion. 
In the last three years authors focused their attention on real-
world optimization problems (22 papers). While, at the same 
time, only six papers presented experiments on standard test 
functions.  

Table 2 and 3 provide statistics on PSO variants. The most 
popular velocity update rule is the one with the inertia weight  
(22 papers), followed by the canonical rule (7 papers). Global 
and local neighborhoods were equally often used (16 times 
gbest and 15 times lbest). The sequential PSO algorithm 
dominates with 29 occurrences. 25 papers report one-swarm 
PSO variant and 9 papers multi-swarms. All multi-swarm 
GPGPU PSOs are characterized by short runtime compared to 
one-swarm PSO.  

5.3 Test environment 
40 reports from the entire collection tested benchmarks in 
continuous domain, being the primary area of PSO 
application. The continuous domains benchmarks are better 
examined and discrete tests are still rare, but not missed. Only 
3 papers tested benchmarks in discrete domain. 

 20 out of 40 publications in continuous domain presented 
experiments on standard test functions. The most popular 
were unimodal Rosenbrock (15 papers), Sphere (14 papers) 
and multimodal Rastrigin (16 papers) and Griewank (9 
papers). The interest in standard test functions showed that it 
is an accepted experimental environment by the scientific 
community. The authors’ choice on the benchmarks set, 
domains, dimensions and other coefficients were arbitrary. 
The lack of test environment unification forbade a comparison 
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of experimental results.  
22 out of 40 publications in continuous domain presented 

experiments on other than standard test functions. Seven 
reports described PSO optimizing sampling process in the 
motion tracking systems. Fourteen papers presented the set of 
factors optimization in some complex parameterized system. 
[35] and [53] described PSO based classifiers. 

5.4 Experimental results 
Tables 2, 3 and 4 show speedups obtained in experiments. It 
was the most common factor used to estimate the effectives of 
parallelization (only [23], [37] and [49] do not report the 
speedup value). 9 out of 43 publications reported speedup 
grater than 100 times.  Such high values were only reported in 
very specific environment conditions (number of problem 
dimensions, number of particles). Average speedups are few 
times lower. All authors underline the highest values, which is 
rather inadequate. To show general tendency it is More 
suitable to present the average acceleration. It is worth 
remembering, that the speedup factor expresses only the 
parallelization effect and does not help in comparing results 
especially from different optimization tests.  

The experiments analysis (Table 2) raises a question if the 
results on standard test functions are correctly announced. It is 
very popular for authors to report great speedups when at the 
same time the objective function values are far away from the 
global optimum area. Of course it is a question of the main 
goal: if it is the runtime decreases or the optimization 
improvement. In the author’s opinion both goals should be 
fulfilled at the same time. Some reports presented that the 
closeness to the optimum was not worse than those reached 
by the sequential PSO in the same test environment [14], [15], 
[16], [17], [23], [26], [27]. [32], [38] directly addressed the 
problem and showed an optimization improvement and 
acceleration. 

6 CONCLUSIONS 
This paper organizes 45 publications on GPGPU PSO 
implementation published since 2007 applying a 
comprehensive papers classification helps to sort the 
publications. Three tables present a synthetic literature review. 
They produce the handy guide for anyone looking for brief 
summation of recent works in the area.  

The proposed collection’s organization allowed statistical 
analysis in different categories, to generalize, and to look for 
dependencies in approaches and results.  

One of the observations is that the common efficiency 
measure used by authors (93%) is the speedup. It seems 
reasonable to use it to compare results, but this factors only 
shows the parallel acceleration.  Unfortunately speedup varies 
on different optimization problems and increases with 
problem dimensions and swarm size.  The enormous speedup 
seems a success, but sometimes to make an application 
practical a few fold acceleration is sufficient.   

The next conclusion is that using standard benchmarks is 
the very popular practice in population based meta-heuristic 
optimization methods testing. Although it is very popular and 
accepted by the research community the testing environment 

it is still hard to compare results. The problem arrives mostly 
from many parameters changing the test function itself and 
arbitrary chosen coefficients in the algorithm e.g. PSO.  This is 
the main obstacle in comparing results.  From all cited reports 
only [16] presented direct comparison to other results and 
even this seems unsatisfying. Bratton and Kenedy [5] tried to 
define standards in the testing environment. They proposed a 
list of popular test functions with their dimensions and 
domains, ranges for initial values and values for constant 
coefficients. Even authors who cited this publication did not 
follow those rules. The solution is to convince authors to use a 
unified testing environment like CUTEst or just follow some 
standard, for example [5].  

The survey reveals new areas of research such as: other that 
reported tests or real-world applications (e.g. Heat Exchanger 
Network Synthesis), other PSO variants (e.g. Fully Informed 
Particle Swarm), comparison study (e.g. different PSO variants 
efficiency on GPU). Another suggestion is wide mutli-swarm 
solutions exploration because their runtime is very short. The 
discrete PSO parallelization was not very popular and could 
be recommended for survey. 

The proposed organization could be expanded by 
additional analysis. Most publications describe the data 
structure and CUDA kernels code with sufficient details. Such 
a survey could show the relation between data structure and 
the results.  
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Table 2 PSO GPU implementations tested on standard benchmarks by publication date. 

   PSO Experiments  

References Year Name Variant Swarm 
size 

Objective function Results GPUs V N S M Name from Table 1 D Runtime[s] Sup Optimum found 
Zou et al. [10] 2009 GPU-

SPSO 
C L 

ring 
S 1 400-2800 fSp, fgRa (-10,10), fgGr, 

fgRo (-10,10) 
50, 100, 
150, 200 

13- 370 3.8-11.4 fSp, fgGr (D<100) GForce 8600GT 

Veronose et al. [11]  2009 - C G S 1 100-1000 fgSw2.6, fgRa, fAc, fgGr, 
fP8, fP16 

100 2.7-340  5.4-22.3 ? GTX 280 

Wang [12] 2009 GPSO ? ? ? 1 100-1mln fSp (-5.12,-5.12), fSp 
(shifted), fgRa, fAc, fgGr, 
fgRo (-10,10) , fSw +5 others 

100 <1 – 100 2-270 fSp, fSp (shifted) Tesla C 1060 

Laguna-Sanchez et 
al.  [13] 

2009 - W L S 1 60-1024 fgGr, fgRa, fgRo 30, 60, 120 6.6 – 200  1-28  Always over 30000 
generations 

GForce 8600GT 

Mussi et al. [14] 2009 CUDAPS
O 

St L 
ring 

S 1,2,3 ? fgRa 1-100 0.25-0.5 1-50 ? GForce 8800GT 

Zhou et al. [15] 2010 PSO-TM C L 
ring 

S 1 1024 -
8192 

fEl, fRa (-10,10), fAc, fgRo (-
10,10) + 25 other 

30 1.4 – 53.7  7.2 – 25.5 fEl, fAc, fRos  Geforce 9800GT 

Mussi et al. [16]  2011 Ring PSO 
 

W L 
ring 

S 1 32 fSp, fgRa, fgRo, 1-120 0.1-21.7 8-138 fSp (D<100), fgRa 
(D<20), fgRo (D<10) 

Geforce: EN8800GT, 
GTX260AMP; Quadro 
FX5800 

SyncPSO W L 
ring 

A 1-112 32, 64, 
128 

fgRa 1-9 0.02-0.35 7-30 ? Geforce EN8800GT 

Mussi et al. [17] 2011 - W L 
ring 

A 1-112 27, 32 fSp, fSw1.2, fgRo, fgRa, 
fgGr 

1-120 0.02-0.35 2-250 fSp, fSw1.2 (D<1120), 
fgRa (D<20), fgRo 
(D<10), fgGr (D<5) 

Geforce GTX260AMP 
Geforce GTS450 

Cardenas-Montes 
et al.  [18]  

2011 - ? ? ? 1 20 fSw1.2 1000-15000 4.5-130.9 1.8-20.7 No GeForce GTX295 

Cardenas-Montes 
et al.  [19] 

2011 - St G S 1 20 fSw1.2 20000 ? 20.4-26.7 ? GTX 295 
43.3-43.8 ? TESLA C2050 

Zhou et al. [20]  2011 GPU-
PSO 

C L 
ring 

S 1 512-1280 fSp, fgRa (-10,10), fgGr, 
fgRo (-10,10) 

50-200 
1000, 2000 

1.17-128.2 2.7 – 39.7 fSp (D=50), fgGr 
(D=50,100) 

NVIDIA Geforce 
9800GT 

Hung et al. [21] 2012 GPSO W G S 1 16 - 
1048576 

fSp (-5.12,-5.12), fSp 
(shifted), fgRa, fAc, fgGr, 
fgRo (-10,10) , fSw +5 others 

100 <1 – 100 1-270 fSp, fSp (shifted), fAc, 
fgGr  

Tesla C1060 

Cagnoni et al. [22] 2012 - W L 
ring 

S 1 32-8192 fSp, fgRa, fSw1.2 , fgRo, 
fgGr 

32, 64, 128 0.1-10 1-6 ? GT-540M 
GTX-560Ti 

Calazan et al. [23] 2012 - W G S 7-224 32-1024 fSp, fgGr, fRa (-10,10) 30 0.38-1.13 ? fSp , fGri, fRas (error < 
0.011) 

GeForce GTX 460 

Roberge et al. [24]  2012 CUDA-
PSO 

W G S 1 256-
16384 

normalized fgRo 20 ? 20-256 ? GTXS60Ti 

Roberge et al. [25] 2012 parallel 
PSO 

W G S 1 256-
16384 

normalized fgRo 20 0.1-100 20-215 ? GTX560Ti 

Calazan et al. [26] 2013 PDPSO W L 
ring 

S 1 6-1024 fSp, fSw, fgRo (-16,16), 2-256 0.05-9 1-81.5 fSp, fSw, (both error < 
0.0001) fgRo (D<256) 

GeForce GTX 460 

Calazan et al. [27] 2013 CPPSO W L 
ring 

S 2,4 4-256 fSp, fSw, fgRo (-16,16), fgRa 2-256 0.02->1 1-81.5 fSp , fSw (both error < 
0.0001) fgRo (D<128), 
fgRa (D<16) 

GeForce GTX 460 

Kumar et al. [28] 2013 - W G S 16-
224 

500,100, 
1500 

Shifted: fSp, fEl, fgRa, fgRo, 
fAc  

1000 96-1211 9-60 fSp, fEl, fgRa, fAc Tesla M-2070 

Name – algorithm name, V- variants of the velocity calculation: St – standard PSO, W – PSO with the inertia weight, C – canonical PSO; N – neighborhood topology: G, L – Gbest and Lbest respectively, S – 
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synchronous PSO, A – asynchronous PSO, M – number of swarms, Sup –Speedup ratio; ?- no data available 
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Table 3 PSO GPU implementations tested on real-world optimization problems or other test functions by publication date. 

  PSO Experiments  

References Year Variant Swarm 
size Objective function Problem description Sup GPUs V N S M 

Mussi et al. 
[29] 

2009 St L 
ring 

S 1 64 Weighted Bhattacharyya coefficients in 3 
channels HSV color space. 

Road sign detection in Advanced Driving Assistance Systems, which takes 
into account shape and color to detect signs. PSO estimate the pose of the 
sign in the 3D space and the position of the sign in the image. 

15 Gforce 
8800GT 

Mussi et al. 
[30] 

2010 Wt ? S 1 10 Compares the silhouettes generated by the 
model with the silhouettes extracted from 
images. 

Marker-less full-body articulated human motion tracking system from 
multi-view video sequences acquired in a studio environment. Detecting 
location, orientation and scale of each body part. 

20 Quadro FX 
5800 

Solomon et al. 
[31]  

2011 W G A 1-
60 

128 Max Machine Available Time (MAT): the 
total amount of time required by the 
machine to complete all tasks. 

Task matching/mapping problem: composed of two distinct components: 
1. The set of tasks, T, to be mapped, and, 2. The set of machines, M, which 
tasks can be mapped to. A discrete PSO was also tested. 

32 Geforce 
GTX260AMP 
 

Wachowiak 
et al. [32] 

2012 Wt G S 1 500-
4000 

Toy protein folding function (3D), logistic 
function (2D), disequilibrium function 
(8D)  

Three problems: Toy protein folding, realistic two-dimensional logistics 
problem: it is a maximum likelihood estimator; disequilibrium problem in 
econometrics concerns determining the supply and demand components of 
a time series of transacted quantities 

298 Tesla S1070 

Datta et al. 
[33]  

2012 C G S 1 256-
1024 

Self Potential model (5D), Magnetic Model 
(4D), Resistivity Model (2D) 

Geology – invert Self Potential (Surda Area of Jharkhand, India), Magnetic 
(anomaly of Boston Township) and Resistivity (Satkui) models. 
Optimization of model parameters.  

22 NVIDIA 
9200M GS 

Nobile et al. 
[34]  

2012 W G S 3, 
4 

32 Distance between the sampled in the 
experiment biochemical species, and a 
simulated dynamics from stochastic 
simulation algorithm. 

Estimation of the stochastic constants of two simple systems: the Michaelis-
Menten kinetics (2D) and a prokaryotic auto-regulatory gene network (6D) 

24 Tesla C1060 

Platos et al. 
[35]  

2012 W ? ? ? 4-10240 Combination of precision and recall 
(classification measures) 

Document classification form data-sets: Reuters-21578, Iris collection, 20 
Newsgroup with different number of tokens. 

10.5 Tesla C2050 

Rabinovich et 
al. [36] 

2012 St G S 2-? 256-
28160 

Optimize the sum of the priorities of the 
signals that fall within the placement of 
the three receivers/jammers (3x48D) 

Radio Frequency Resource Allocation Optimizer – allocation of radio 
frequency resources with constraints of bandwidth and power.  

5 GeForce GTX 
465 

Reguera-
Salgado et al. 
[37]  

2012 C L S 1 50 Minimum Root Mean Square 
Error (RMSE) of the differences between 
the GCPs and associated projected pixels 
locations. (6D) 

Geocorrection – PSO is used to find the set of corrections of the navigation 
data that produces the best match between the projected pixels and the 
Ground Control Point. Used for digital airborne pushbroom images (Cies 
Islands) to Digital Terrain Models. 

time
20s-
220s 

GeForce 
9500GT 

Roberge et al. 
[24] 

2012 W G S 1 32-512 Harmonic minimization in multilevel 
inverters (2D).  

Problem of optimal switching angles to reduce or eliminate harmonics in 
multilevel inverters. For some given circuit the optimal angles to control the 
DC sources and generate a current while minimizing harmonic. 

115 GTXS60Ti 

Roberge et al. 
[25] 

2012 W G S 1 32-256 Distance between the virtual marker 
projected on the 2D image and the actual 
marker identified on the 2D image 

High-speed camera on the aircraft records multiple bomb drops as 2D 
video images. Bomb’s position in 3D is obtained from 2D image. Problem: 6 
degrees of freedom (6DOF) (x, y, z, yaw, pitch, and roll). 

140 GTX560Ti 

Rymut et al. 
[38]  

2013 W G S 1 100-400 An overlap between person silhouette and 
3D model + image to camera edge 
distance (4 cameras) 

Marker-less body human motion tracking system – recovery of humane 
pose. Combination of Particle Filter and PSO. Result: 16 frames/s 

7.5 GeForce 
590GTX 

Zhang et al. 
[39] 

2013 C L 
ring 

S 1 128 Minimize error: the sum of the differences 
(distances) in two models for every 
sampling set (31D) 

Marker-less 3D articulated human motion tracking system. Searching of the 
optimal pose is the hybrid of important sampling (Monte Carlo method) 
and niching PSO. PSO resampled after M generations. 

30 GeForce GTX 
295 

Rymut et al. 
[40]  

2014 W G S 1 100-
1000 

An overlap between person silhouette and 
3D model + image to camera edge 
distance (4 cameras) 

Real-time body human motion tracking system – recovery of humane pose. 
3D model has 26 DOF. Fitness function is decomposed. Result: 12 frames/s 

12 GeForce 
590GTX 

Ma et al. [41] 2014 W G S 1 64-2560 The difference between the measured data 
and the calculated current is gradually 
minimized 

Extract and estimate the parameters of a photovoltaic (PV) model. The 
single diode model (SDM) with five parameters: photocurrent, saturation 
current, diode ideality constant, series resistance, and shunt resistance, that 

80 GTX760 

30 9400M 
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need to be estimated was used. 
Van Heerden 
et al. [42] 

2014 W L 
ring 

S 1 1024 Minimum of Euclidean distance from the 
goal plus penalty. 

Optimization of model predictive control: continuous non-linear dynamic 
system of the Acrobot motion control. The particles re-sampling in the area 
of previous best is used. 

8.3 GeForce GTS 
450 

V- variants of the velocity calculation: St – standard PSO, W – PSO with the inertia weight, subindex t-tuned inertia, C – canonical PSO; N – neighborhood topology: G, L – Gbest and Lbest respectively, S – 
synchronous PSO, A – asynchronous PSO, M – number of swarms;  Sup –Speedup ratio; ?- no data available  
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Table 4 PSO GPU implementations tested on real-world optimization problems or other test functions by publication date, PSO variants other than in Table 2. 

  PSO Experiments  

References Year Variant Name Objective function Problem description Sup GPUs 

Papadakis et 
al. [43] 

2011 The gbest component is removed and particles 
are attracted by their personal best based on the 
learning probability (random value). 
Tournament selection chooses better correction. 

Comprehens
ive Learning 
PSO 
(CLPSO) 

Minimize sum of incremental 
cost function of each unit 
penalized by technical 
constraints (9-72 D). 

Economic Dispatch problem (ED). ED considers 
power system, comprising N units. Problem: calculate 
the output of each unit so that the total operating cost 
is minimized, providing power balance and technical 
limit constraints.  

36.6 Geforce 
GTX 260 

Zhu et al. 
[44] 

2011 The Euclidean interference factor is added into 
a inertia weight PSO. It is a sigmoid function. 
Its argument is Euclidean distance from a 
particle to gbest. 

Euclidean 
PSO (EPSO) 

fSp, fgRo (-30,30), fgRa, fgGr, fAc Standard test function for global optimization. 
Functions with (1000≤D≤8000) arguments were tested. 

0.7-
16.3 

Geforce 
GTX 480 

Chen et al. 
[45] 

2012 Personal best attraction is a mutation by 2-
exchange using personal best position. 
Analogously global best attracts to its position.   

LaPSO 
(discrete) 

Minimize weighted function that 
calculates inner Hamming 
distances between points in LHD.  

n-run and k-factor Latin hypercube designs (LHDs) – 
is a method for generating samples of plausible 
collections of parameter values. A sample is the only 
one in each k-axis. 

59 Tesla 
C2070 

Sharma et al. 
[46] 

2012 The confident factor was exchanged by 
personal best and global best position ratio and 
social ratio was exchanged by market volatility. 

Normalized 
PSO (NPSO) 

Minimize a portfolio value that is 
the total estimated cost of the 
holdings of the investor. 

Financial application: option pricing based on 1) 
current stock price, 2) strike price, 3) expiration time, 
4) rate of interest and 5) market volatility. The 
portfolio is composed of European and American call 
and put options.  

45 ? 

Zhang et al. 
[47] 

2012 NPSO is a multi-swarm approach. The Velocity 
is updated with bare bone rule. The new 
position is updated by random diffusion. 
Algorithms steps were modified.    

Niching 
Bare Bone 
PSO 
(NPSO) 

Minimize the sum of error from 
all body parts. Hierarchical 
optimization. 

The body poses tracking in 3D - 3D volumetric 
reconstruction of the real-world dynamic scenes. 
Searching of the optimal pose is the hybrid of 
stochastical generative sampling algorithm and 
niching PSO. 

30 GeForce 
GTX 295 

Zhao et al. 
[48] 

2012 The velocity update with inertia weight was 
modified. Beside personal best and global best 
positions the best-so-far in sub-swarm 
additionally attracts the particle.  

Parallel 
multi-swarm 
PSO 

Minimize LS-SVM model.  Prediction for gas holder level in the Linz Donawitz 
converter gas system based on least square support 
vector. The multiple sub-swarms (PSO) optimizes a 
model parameters. 

65 GeForce 
GTX 260 

Souza et al. 
[49] 

2013 Mutation of inertia weight, global best and 
cognition and social coefficient is performed, 
and then better solutions are selected. Velocity 
updates use mutants instead random numbers  

Cooperative 
Evolutionar
y Multi-
Swarm PSO 
(CEMSO) 

Minimizing 1) the manufacturing 
cost of a steel beam 2) total 
weight of speed reducer 3) the 
quantity of material 

1) Welded Beam Design (WBD): (4D)  
2) Speed Reducer Design with 25 restrictions (SRD-25) 
(7D). 
3) Air Tank Design (ATD): (5D); 
All problems with constraints  

? GeForce 
GT 330M 

Kilic et al. 
[50] 

2013 A logistic transformation is used to accomplish 
the velocity vector. A probability of keeping 1 
or exchanging to 0 is determined. 

Binary PSO 
(BPSO) 
discrete 

1) optimum pixel set of the 
impedance (32D) 2) optimize the 
height of each layer and the 
periodicity of the gratings  

1) The optimization for tuning the shape of the 
antenna to the user-specified frequency. 2) The 
antireflective surface design. 
 

10 4x Tesla 
C1060 
graphics 

Zan et al. 
[51] 

2014 A logistic transformation is used to accomplish 
the velocity vector. A probability of keeping 1 
or exchanging to 0 is determined. 

Binary PSO 
(BPSO) 
discrete 

Maximum of linear composition 
of profit and penalty (64-1024D) 

The Multidimensional Knapsack Problem (MKP): 
select items from the available set to knapsacks of 
limited capacity. 

9.6 GeForce 
GTX 580 

Ouyang et 
al. [52] 

2014 The velocity update with inertia weight is used. 
Hybrid method joining Conjugate gradient 
method with PSO. The best particle in PSO is 
replaced by best from CGM. 

PHPSO Minimize the weighted sum of 
problem variables  

One dimensional nonclassical heat conduction 
equation is modified into linear equation systems then 
transformed into an unconstrained optimization 
problem, which is optimized by PSO. 

21 GTX465 
23 Tesla 

C2050 

?- no data available 
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