
International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 344
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Survey on Particle Swarm Optimization
accelerated on GPGPU

Joanna Kołodziejczyk

Abstract— The paper presents an overview of recent research on the Particle Swarm Optimization (PSO) algorithm parallelization on the
Graphics Processing Unit for general-purpose computations (GPGPU). This survey attempts to collect, organize, and present reports in the
area published since 2007 in a unified way. In order to organize the literature a classification by objective functions and PSO variants is
proposed. The paper also compares experimental results taking into account the most popular factor, the calculating acceleration ratio
called speedup. Results of the survey are given in a very compact and comprehensive way and could be used as a guide in this area. As a
summary, conclusions from categorization, a comparability problem, and possible research areas are discussed.

Index Terms—General-Purpose computing on Graphics Processor Units, NVDIA CUDA, Particle Swarm Optimization

—————————— ——————————

1 INTRODUCTION
HE Particle Swarm Optimization algorithm is a popular
tool for continuous domains exploration presented for the
first time in [1]. The main PSO attributes are: 1) it finds a

satisfactory solution for complex and large-scale problems 2) it
converges fast 3) it is easy to implement 4) the number of
adjustable factors is relatively small. The major problem with
the practical PSO implementation is its runtime especially in
multidimensional optimization tasks.

One of the most promising choices to speed up the
computational process is the use of parallel implementations.
All algorithms based on the population/swarm are ideally
suited for parallelization, including PSO. Starting in 2001
developers can use GPUs, which are high-performance
parallel accelerators. A PC equipped with a programmable
graphics unit can be perceived as a dual processors device,
where depending on the calculations, tasks can be split
between GPU and CPU.

Due to the wide availability, programmability, and high-
performance of consumer level GPUs, NVIDIA corporation
invented the Compute Unified Device Architecture (CUDA)
platform and implemented it on GPUs they produce. This
programming model becomes very popular because it eases
the GPUs code development. The CUDA platform allows
writing GPU code in C functions called kernels. Many GPU
threads in a Single-Instruction-Multiple-Thread (SIMT)
fashion execute each kernel. Each thread executes the entire
kernel once [2].

GPGPU popularity as a platform for parallel
implementation of population based meta-heuristic
optimization methods resulted in two publications presenting
a summary of recent results in the area. Kromer et al. [3]
presented a general description of twenty-three GPGPU PSO
implementations from the CUDA programming point of view.
A summary of optimization problems, data organization and

most interesting results and problems were given. The second
report by Kromer et al. [4] provides a brief overview of the
latest state-of-the-art research on the design, implementation,
and applications of parallel GA, DE, PSO, and SA-based
methods on GPUs. The authors shortly described all presented
meta-heuristics and gave a detailed description of the parallel
CUDA programming model. They described eighteen PSO
GPGPU implementations between 2012 and 2014, giving
information about: the application area, the most important
results and when possible the graphic card used. Both Kromer
et al. surveys lack a method for literature classification or
organization.

The objective of this paper is to collect, organize and
present publications on GPGPU PSO implementations. In
order to organize the growing amount of literature in this
field, the paper presents a categorization of the different types
of GPU PSO implementations. Categories come from the
implementation diversity (standard benchmark functions or
real-world optimization problems) and concern PSO
algorithm variants. Other attributes, which helped in the
papers’ organization, were chosen in order to compare
experimental results (runtime, speedup ratio, and
effectiveness in the optimum discovery).

This paper is organized as follows. The next section is a
brief introduction to the particle swarm algorithm and
indicates categories coming from its different variants. Section
3 describes objective functions applied in the literature.
Section 4 presents emerged categories used in the paper
classification. Section 5 shows the literature analysis and
discussion. The conclusions describe the comparability
problem and further research areas.

2 PSO ALGORITHM VARIANTS
This section briefly describes the PSO algorithm in his
standard version. Subsections present different PSO variants
distinguished based on the velocity update rule,
neighborhood and number of swarms. PSO variations will be
used as categories in the literature organization.

T

————————————————
• Joanna Kołodziejczyk is currently assistant professor at Faculty of Computer

Science and Information Technology, West Pomeranian University of
Technology, Szczecin, Poland. E-mail: jkolodziejczyk@wi.zut.edu.pl

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 345
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2.1 Standard PSO
The main inspiration for PSO was the social behavior of
biological organisms seeking for food. In the PSO classic
algorithm particles move through the search space and they
are attracted by the best particle in the swarm and the best
solution they individually have found in order to find the
optimum [5], [6].

The optimization problem solved by PSO in continuous
domain is to find the minimum value in function 𝑓:ℛ𝐷 → ℛ,
which is the objective function, or cost function, of an
application problem and D is the problem dimensionality:

 minimize 𝑓(�⃗�) (1)
The vector �⃗� contains the problem’s decision variables.

Although (1) is considered an unconstrained optimization
problem, in practice only solutions belonging to a subset of ℛ𝑛
are considered:

 Ω = [𝑥1𝐿 ,𝑥1𝑈] × [𝑥2𝐿 ,𝑥2𝑈] × ⋯× [𝑥𝐷𝐿 ,𝑥𝐷𝑈] (2)
where: 𝑥𝑑𝐿 is the lower and 𝑥𝑑𝑈 the upper bound of the search
space among dimensions 𝑑 = 1,2, … ,𝐷.

The PSO algorithm works on the particle’s population of
size s. Each individual particle i is a potential solution to an
optimization problem and is given by the position vector
x�⃗ i = (xi1, xi2, … , xiD), where i = 1,2, … s. The swarm is initialized
by random positions drawn from a uniform distribution
within the search space Ω. Each particle keeps a memory of its
own best position, it individually has found, called personal
best p�⃗ i = (pi1, pi2, … , piD). This position is only updated when
the particle’s new position at step t yields a better function
value than the previous personal best in step t − 1:

 �⃗�𝑖(𝑡) = � 𝑥𝑖(𝑡)
�⃗�𝑖(𝑡 − 1)

if 𝑓�𝑥𝑖(𝑡)� < �⃗�𝑖(𝑡 − 1)
otherwise

(Er
ror!
Boo
km
ark
not
defi
ned
.3)

The global best position is the position with the smallest

fitness value of all positions in the neighborhood in current
step t:

 �⃗� = argmin𝑓(𝑝𝑖),
 𝑝𝑖∈𝑃

(Error!
Bookmark

not
defined.4)

where P is the set of personal best vectors from the given
neighborhood.

Particle i moves from its current position to a new one
along velocity vector v�⃗ i = (vi1, vi2, … , viD) , using
adjustingjutingthe position update equation:

 𝑥𝑖 = 𝑥𝑖 + �⃗�𝑖 (Error!
Bookmark

not
defined.5)

The velocity is first updated as:

�⃗�𝑖 = �⃗�𝑖 + 𝜑1𝑟1 ∘ (𝑝𝑖 − 𝑥𝑖) + 𝜑2𝑟2 ∘ (�⃗�𝑖 − 𝑥𝑖)
(Error!

Bookmark
not

defined.6)
where operator ∘ denotes a Hardmard product and

�⃗�𝑖 denotes the velocity vector of particle i
𝑥𝑖 denotes the position vector of particle i
𝜑1 is the cognitive acceleration coefficient
𝜑2 is the social acceleration coefficient
𝑝𝑖 denotes the personal best position vector of

particle i
�⃗� is the best position vector found in the entire

neighborhood
𝑟1and 𝑟2 are vectors with pseudo-random numbers

selected from a uniform distribution 𝑈(0,1) at
every update.

Each particle’s velocity is randomly initialized to lie within
�vdmin, vdmax� in every dimension d . This velocity clamping
allows particles to step through the same maximum
percentage of the search space. Without this, particles were
prone to shift outside Ω. The update process is presented as
the Algorithm 1 [6].

Algorithm 1. Basic Particle Swarm Optimization
Initialize randomly x�⃗ i and v�⃗ i
for each step t do
 for each particle i = 1,2, … s do
 Evaluate particle fitness f(x�⃗ i)
 Update personal best p�⃗ i
 Update global best in the neighborhood g�⃗ i
 end for
 for each particle i = 1,2, … s do
 Update position x�⃗ i using equation (5) and (6)
 end for
end for

The algorithm can be allowed to run either for a number of

iterations expected to produce a good solution or until a user-
specified criterion or a threshold is reached.

2.2 Velocity update
PSO can be distinguished based on differences in the velocity
update rule (equation (6)).

The PSO with an inertia weight (w) is a method of adjusting
the previous particle velocities to the optimization process:

v�⃗ i = wv�⃗ i +φ1r⃗1 ∘ (p�⃗ i − x�⃗ i) + φ2r⃗2 ∘ (g�⃗ i − x�⃗ i).

(Error!
Bookmark
not
defined.7)

The inertia weight can be static or can be changed
dynamically. When w is well adjusted the swarm has a grater
tendency to constrict in the area containing best fitness and
explore this area in detail.

A canonical PSO is another popular rule [5], [8] where the
velocity is update as follows:

�⃗�𝑖 = 𝜒(�⃗�𝑖 + 𝜑1𝑟1 ∘ (𝑝𝑖 − 𝑥𝑖) + 𝜑2𝑟2 ∘ (�⃗�𝑖 − 𝑥𝑖)).

(Error!
Bookmark

not
defined.8)

χ is known as a constriction factor and is derived from the
existing cognitive and social coefficients:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 346
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

𝜒 =
2

�2− 𝜑 − �𝜑2 − 4𝜑�
,

 𝜑 = 𝜑1 + 𝜑2.

(Error!
Bookmark

not
defined.9)

The constriction factor balances global and local searches. It
was found that when φ > 4 the swarm moves quickly and
converges to the best found position in the search space.

Besides the three presented velocity update rules there are
many other modifications. Some of them will be mentioned
further in the paper when reports from their application will
be discussed. Most of those variations were presented once in
the entire collection. A single occurrence in the literature is not
sufficient to design a category because categorization ought to
introduce a generalization.

When the velocity update rule is the category/class in the
designed reports organization, three attributes are
distinguished: 1) standard PSO, 2) PSO with the inertia
weight, and 3) canonical PSO.

2.3 Neighborhood topology
A neighborhood in PSO is the subset of particles in which each
particle is able to communicate with each other, in order to
determine the best particle denoted as g�⃗ i [7], [8].

Gbest model or global topology is defined as a
neighborhood topology composed of the entire population. In
this model the P vector from equation (4) is composed of all
personal bests in the swarm P = {p�⃗ 1, p�⃗ 2, … , p�⃗ s}. This topology is
also known as a star because each particle is connected to all
particles in the swarm (Fig. 1).

Lbest model or local topology is a neighborhood topology
comprising some number of adjacent neighbors in the
population. One of the most popular local topology is the ring
model (Figure 1), where the P vector from equation (4) is
composed of previous, the particle and the next particles
personal bests P = {p�⃗ i−1, p�⃗ i, p�⃗ i+1}.

In a global neighborhood, information is constantly
distributed to all particles. When solving some optimization
problems this resulted in quick attraction to the same region in
the search space. Local topologies were used to prevent the
PSO from stacking in a local optimum.

Fig. 1 The star (left) and ring (right) topology [5]

Whenever the neighborhood (difference in particle
connections) is the category/class in the designed reports
organization, two attributes are distinguished: 1) gbest and 2)
lbest.

2.4 Multi-swarms PSO
Standard PSO is a one-population algorithm. A common
procedure in all optimization heuristic methods is population

multiplication. The GPU parallelism encourages multi-swarm
models, but they must solve the swarms’ communication
problem.

In this paper, the author made an assumption to avoid a
more detailed categorization than distinguishing one and
multi-swarm PSOs. The argument behind this decision is that
multi-swarms’ implementations mainly change data
structures. The data structure manipulation is connected
closely to neither the objective function nor PSO variants,
which were chosen by the author to perform classification.
The data structure is a matter of parallel implementation i.e.
CUDA kernels and threads coding. The PSO parallelization on
GPUs is a very interesting but also a broad topic. If included
into this survey, it will make classification complex and vague.

When the number of swarms is the category/class in the
designed reports organization, two attributes are
distinguished: 1) one and 2) multi.

2.5 Synchronous and asynchronous PSO
In the Algorithm 1. all particles’ personal bests and global
bests within their neighborhood are updated first. Then the
particles are moved. These are called synchronous updates as
opposed to asynchronous updates, where once the personal
best is updated the particle is immediately moved (Algorithm
2).

Algorithm 2. Asynchronous PSO
Initialize randomly x�⃗ i and v�⃗ i
for each step t do
 for each particle i = 1,2, … s do
 Evaluate particle fitness f(x�⃗ i)
 Update personal best p�⃗ i
 Update global best in the neighborhood g�⃗ i
 Update position x�⃗ i using equation (5) and (6)
 end for
end for

In consequence each particle can be moved in no special

order and the swarm moved immediately in the area of newly
found optima.

When the global best update step is the category/class in the
designed reports organization, two attributes are distinguished: 1)
synchronous and 2) asynchronous.

3 OBJECTIVE FUNCTIONS
The PSO algorithm solves different optimization problems. As
described in section 2.1, it could be a process of some function
(the objective function) minimization in the continuous
domain. Problems from discrete domains can also be solved.
In this section, GPGPU PSO implementations are
distinguished based on optimization problems they were
applied to.

The objective function is a mathematical form of the
optimization goal. Its properties determine the behavior of the
PSO algorithm. Functions may be expensive or inexpensive in
terms of time per function evaluation. Test functions or
optimization problems have a great effect on the PSO

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 347
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

performance and must be considered when tuning and
running the algorithm.

In many experiments presented in the literature standard
test functions in continuous domain are used. Benchmark
functions are intended to share interesting properties with
real-life functions while being inexpensive in experimentation.
These functions are divided into categories [5].

Test functions are listed in Table 1, where columns are
labeled as follows:

• F – a short function name
• Name – long function name
• E q - equations’ locations in the literature
• Domain,
• Min - coordinates of the global minima
• O - value of the global optima
• C – function’s categories: S - simple, unimodal

problems, and C - highly complex multimodal
problems with many local minima.

Table 1 Standard benchmarks used in the litereature from the collection
under study

F Name Eq Domain Min O C

fSp Sphere/Parabola [5] (-100,100) 0 0 S
fEl Ellipse [15] (-5, 5) 0 0 S
fgRo Generalized Rosenbrock [5] (-30,30) 1 0 S
fSw1.2 Schwefel 1.2, Rotated

hyper-ellipsoid
[5] (-100,100) 0 0 S

fgRa Generalized Rastrigin [5] (-5.12,5.12) 0 0 H
fgGr Generalized Griewank [5] (-600, 600) 0 0 H
fSw Schwefel [21] (-500,500) 420 0 H
fgSw2.
6

Generalized Schwefel
2.6

[5] (-500,500) 420 0 H

fAc Ackley [5] (-32,32) 0 0 H
fP8 Penalized Function P8 [5] (-50,50) -1 0 H
fP16 Penalized Function P16 [5] (-50,50) 1 0 H
F – short name, Eq – reference to the equation, Min – minimum position, O –
minimum function value, C – category: S – unimodal, H- multimodal

These test problems are widely used and especially

designed to test different properties of optimization
algorithms.

Except test functions, other benchmarks or real-world
optimization problems are presented in the literature. When
the objective function is the category/class in the designed
reports organization two attributes are distinguished: 1)
standard global optimization test functions and 2) other
benchmarks and real-world optimization problems.

4 CATEGORIES
Previous sections presented possible GPGPU PSO
implementations categorization based on the problem they
solved and on the algorithm variation. Bringing together all
previously presented classes the following classification
schemata is proposed (Fig. 2). There are two categories: 1)
Objective function and 2) PSO variant. PSO variant is divided
into four subcategories: 1) velocity update, 2) neighborhood
topology, 3) number of swarms and 4) global best update.
Each category and subcategory has a set of attributes (bubbles

in Fig. 2). A GPGPU PSO can be one of 48 different types. The
diagram downward tracing obtains a specific PSO type. For
example, the path: “standard test function inertia weight
 lbest one population synchronous” is one of 48
possible types.

5 LITERATURE ORGANIZATION
[3] and [4] described 23 reports on GPGPU PSO
implementation and do not propose any reports organization.
Unlike [3] and [4] this study demonstrates different and
synthetic review. The outcome is a structured catalog in the
form of three tables for anyone looking for the research
summation in the area. The presented collection consists of 45
different reports on GPGPU PSO implementations. The very
first publication in the area was published in 2007 and the last
in 2014.

In the first publication [9] particles were mapped into

textures on a graphics card and calculated in parallel without
CUDA support. This implementation differs from other
implementations on CUDA and will not be further analyzed.
[53] publication data are incomplete because of the restricted
access to the paper and will not be analyzed as well. This
reduces the total number of references in the collection to 43.

The entire collection was split into three subsets. The key to
assigning to adequate subset was categories. The first subset
(Table 2) contains all publications presenting PSO tested on
standard benchmarks and using any of the three attributes in
the ‘velocity update’ subcategory (Fig. 2). The second subset
(Table 3) stores all reports describing PSO tested on other
benchmarks and using any of the three attributes in the
‘velocity update’ subcategory (Fig. 2). The third subset gathers
all the publications that uses different than the standard,
inertia weight or canonical velocity update rules.

Summing-up, from all 43 collected papers and reports on
GPGPU PSO implementation:

• 19 (44%) tested on standard benchmarks and used PSO
defined variants (first subset - Table 2)

• 14 (37%) tested on other benchmarks and used PSO
defined variants (second subset Table 3)

• 10 (23%) used modified velocity update rules (third

Fig. 2 A diagram of categories designed for the literature on GPGPU
PSO classification

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 348
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

subset - Table 4).

5.1 Guidelines on table reading
Table 2 presents the following information:

1. The first author name and a reference.
2. A publication year.
3. If used, an algorithms’ acronym.
4. PSO variant (V - velocity update rule, N –

neighborhood topology, S – synchronization type, M –
number of swarms).

5. Swarm size – number of particles used in experiments,
for example, range 400-2800 means that beside 400 and
2800 some other sizes in-between were also tested.

6. Short name of standard benchmarks used in
experiments. For example, ‘fgRa (-10,10)’ means that
the generalized Rastrigin function was tested in a
domain other than given in Table 1. The word shifted
indicates that some constant value is added to the
objective function in order to move the global optimum
location.

7. Benchmark dimensions used in experiments, for
example,'30, 60, 120 denotes tests on functions with 30,
60 and 120 arguments.

8. Runtime range (min-max) in seconds, for example,
notation '<1-100' means that tests performed shorter
than a second and not longer than 100 seconds. < or >
symbols denote inability to present a precise value,
because they were retrieved from charts.

9. Speedup (Sup column) (the number of times the
GPGPU PSO implementation runtime was shorter than
sequential PSO runtime) range.

10. The function name and conditions if the global
optimum was found. For example, fSp (D<100) denotes
that the global optimum was found in Sphere function
but only if it had less than 100 arguments. If is only the
name given e.g. fAc, then the global optimum was
every time found.

11. Graphic card used in experiments.
In Table 3 columns from ‘Reference’ to ‘Swarm size’ include

the same data as in Table 2. The column titled ‘Objective
function’ describes the optimization goal. The next column
called ‘problem description’ describes the optimization problem
that was tested with GPGPU during experiments. In many
cases, PSO is only an element of some complex system. In the
collection cited in Table 2 most parallel implementations were
compared to a sequential PSO and then speedup ratio in the
‘Sup’ column was reported. There was only one exception –
[37] – where runtime is given instead. In the last column, the
graphic card name is presented.

Table 4 collects reports, which do not match the designed
categorization. It contains reports presenting rare or new ideas
of the velocity update rule modifications and three
publications on PSO applied in the discrete domain. The
‘variant’ column describes velocity rule modifications. The
‘name’ column presents the algorithm’s name. The four next
columns contain the same information as in Table 3.

5.2 General information
The beginning of CUDA usage in PSO parallelization (year

2009) abounded in standard benchmark testing (5 from 6
reports). The main goal was to demonstrate acceleration and
all experiments confirmed the speed up. Disparities in
speedup values (from 1 to 270) are surprising. Experiments
show e.g. [10], [12] that the speedup depends proportionally
on the dimensions and swarm sizes. [10] and [20] show that by
changing swarm size, test dimensions, and graphic card
without other improvements it is possible to gain a threefold
speedup increase. Speedup variations are also related with the
data structures, memory usage and kernels design in CUDA.
The CUDA implementation details are not discussed here
therefore the exact reasons for speedup differences are not
known.

The peak of research activity in the subject falls in 2012 (Fig.
3). The downward trend could be a sign of ideas exhaustion.
In the last three years authors focused their attention on real-
world optimization problems (22 papers). While, at the same
time, only six papers presented experiments on standard test
functions.

Table 2 and 3 provide statistics on PSO variants. The most
popular velocity update rule is the one with the inertia weight
(22 papers), followed by the canonical rule (7 papers). Global
and local neighborhoods were equally often used (16 times
gbest and 15 times lbest). The sequential PSO algorithm
dominates with 29 occurrences. 25 papers report one-swarm
PSO variant and 9 papers multi-swarms. All multi-swarm
GPGPU PSOs are characterized by short runtime compared to
one-swarm PSO.

5.3 Test environment
40 reports from the entire collection tested benchmarks in
continuous domain, being the primary area of PSO
application. The continuous domains benchmarks are better
examined and discrete tests are still rare, but not missed. Only
3 papers tested benchmarks in discrete domain.

 20 out of 40 publications in continuous domain presented
experiments on standard test functions. The most popular
were unimodal Rosenbrock (15 papers), Sphere (14 papers)
and multimodal Rastrigin (16 papers) and Griewank (9
papers). The interest in standard test functions showed that it
is an accepted experimental environment by the scientific
community. The authors’ choice on the benchmarks set,
domains, dimensions and other coefficients were arbitrary.
The lack of test environment unification forbade a comparison

0
2
4
6
8

10
12
14
16

2009 2010 2011 2012 2013 2014

Number of publications

Fig. 3 Number of GPGPU PSO publication yearly IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 349
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

of experimental results.
22 out of 40 publications in continuous domain presented

experiments on other than standard test functions. Seven
reports described PSO optimizing sampling process in the
motion tracking systems. Fourteen papers presented the set of
factors optimization in some complex parameterized system.
[35] and [53] described PSO based classifiers.

5.4 Experimental results
Tables 2, 3 and 4 show speedups obtained in experiments. It
was the most common factor used to estimate the effectives of
parallelization (only [23], [37] and [49] do not report the
speedup value). 9 out of 43 publications reported speedup
grater than 100 times. Such high values were only reported in
very specific environment conditions (number of problem
dimensions, number of particles). Average speedups are few
times lower. All authors underline the highest values, which is
rather inadequate. To show general tendency it is More
suitable to present the average acceleration. It is worth
remembering, that the speedup factor expresses only the
parallelization effect and does not help in comparing results
especially from different optimization tests.

The experiments analysis (Table 2) raises a question if the
results on standard test functions are correctly announced. It is
very popular for authors to report great speedups when at the
same time the objective function values are far away from the
global optimum area. Of course it is a question of the main
goal: if it is the runtime decreases or the optimization
improvement. In the author’s opinion both goals should be
fulfilled at the same time. Some reports presented that the
closeness to the optimum was not worse than those reached
by the sequential PSO in the same test environment [14], [15],
[16], [17], [23], [26], [27]. [32], [38] directly addressed the
problem and showed an optimization improvement and
acceleration.

6 CONCLUSIONS
This paper organizes 45 publications on GPGPU PSO
implementation published since 2007 applying a
comprehensive papers classification helps to sort the
publications. Three tables present a synthetic literature review.
They produce the handy guide for anyone looking for brief
summation of recent works in the area.

The proposed collection’s organization allowed statistical
analysis in different categories, to generalize, and to look for
dependencies in approaches and results.

One of the observations is that the common efficiency
measure used by authors (93%) is the speedup. It seems
reasonable to use it to compare results, but this factors only
shows the parallel acceleration. Unfortunately speedup varies
on different optimization problems and increases with
problem dimensions and swarm size. The enormous speedup
seems a success, but sometimes to make an application
practical a few fold acceleration is sufficient.

The next conclusion is that using standard benchmarks is
the very popular practice in population based meta-heuristic
optimization methods testing. Although it is very popular and
accepted by the research community the testing environment

it is still hard to compare results. The problem arrives mostly
from many parameters changing the test function itself and
arbitrary chosen coefficients in the algorithm e.g. PSO. This is
the main obstacle in comparing results. From all cited reports
only [16] presented direct comparison to other results and
even this seems unsatisfying. Bratton and Kenedy [5] tried to
define standards in the testing environment. They proposed a
list of popular test functions with their dimensions and
domains, ranges for initial values and values for constant
coefficients. Even authors who cited this publication did not
follow those rules. The solution is to convince authors to use a
unified testing environment like CUTEst or just follow some
standard, for example [5].

The survey reveals new areas of research such as: other that
reported tests or real-world applications (e.g. Heat Exchanger
Network Synthesis), other PSO variants (e.g. Fully Informed
Particle Swarm), comparison study (e.g. different PSO variants
efficiency on GPU). Another suggestion is wide mutli-swarm
solutions exploration because their runtime is very short. The
discrete PSO parallelization was not very popular and could
be recommended for survey.

The proposed organization could be expanded by
additional analysis. Most publications describe the data
structure and CUDA kernels code with sufficient details. Such
a survey could show the relation between data structure and
the results.

REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Proceedings

IEEE International Conference on Neural Networks, pp.1942–1948, Nov
1995.

[2] CUDA C Best Practices Guide, DG-05603-001 v6.0 ed., http:// nVidia.com,
February 2014.

[3] P. Krömer, J. Platoš, and V. Snášel, "A Brief Survey of Advances in Particle
Swarm Optimization on Graphic Processing Units," 2013 World Congress on
Nature and Biologically Inspired Computing (NaBIC), , vol., no., pp.182,188,
12-14 Aug. 2013

[4] P. Krömer, J. Platoš, and V. Snášel. "Nature-Inspired Meta-Heuristics on
Modern GPUs: State of the Art and Brief Survey of Selected Algorithms."
International Journal of Parallel Programming, 42.5, 681-709, 2014.

[5] D. Bratton and J. Kennedy, “Defining a Standard for Particle Swarm
Optimization,” Swarm Intelligence Symposium, 2007. SIS 2007. IEEE,
pp.120–127, April 2007.

[6] J. Kennedy and R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[7] M. Clerc and J. Kennedy, “The Particle Swarm Explosion, Stability, and
Convergence in a Multidimensional Complex Space”, IEEE Transactions on
Evolutionary Computation, 6(1): pp. 58-73, 2002.

[8] J. Kennedy and R. Mendes, “Neighborhood Topologies in Fully Informed and
Best-of-Neighborhood Particle Swarms,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol.36, no.4, pp.515–519,
July 2006.

[9] J. Li, D. Wan, Z. Chi, and X. Hu, “An Efficient Fine-Grained Parallel Particle
Swarm Optimization Method Based on GPU-Acceleration,” International
Journal of Innovative Computing, Information and Control, vol.3, no. 6(B),
p.1707-1714, December 2007.

[10] Zhou and Y. Tan, “GPU-based Parallel Particle Swarm Optimization,” IEEE
Congress on Evolutionary Computation, 2009. CEC ’09., pp.1493–1500, May
2009.

[11] L. de P.Veronese and R. Krohling, “Swarm’s Flight: Accelerating the Particles
Using C-CUDA,” IEEE Congress on Evolutionary Computation, CEC ’09.,
pp.3264–3270, May 2009.

[12] W. Wang, “Particle Swarm Optimization on GPU”, Workshop on GPU
Supercomputing, Center for Quantum Science and Engineering National
Taiwan University, 2009, presentation available on website: <http://
http://cqse.ntu.edu.tw/cqse/gpu2009.html >

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 350
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[13] G.A. Laguna-Sanchez and M. Olguin-Carbajal, N.C.C. and Ricardo Barren-
Fernendez, and J.A. Alvarez Cedillo, “Comparative Study of Parallel Variants
for a Particle Swarm Optimization Algorithm Implemented on a
Multithreading GPU” Journal of applied research and technology, vol.7, no.3,
pp.292–307, 2009.

[14] L. Mussi and S. Cagnoni, “Particle Swarm Optimization within the CUDA
Architecture”, 11th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’09, 2009

[15] Y. Zhou and Y. Tan, “Particle swarm optimization with triggered mutation and
its implementation based on GPU,” Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’10, New
York, NY, USA, pp.1–8, ACM, 2010.

[16] L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of Parallel Particle Swarm
Optimization Algorithms within the CUDA architecture,” Information
Sciences, vol.181, no.20, Special Issue on Interpretable Fuzzy Systems,
pp.4642 – 4657, 2011.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 351
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 2 PSO GPU implementations tested on standard benchmarks by publication date.

 PSO Experiments

References Year Name Variant Swarm
size

Objective function Results GPUs V N S M Name from Table 1 D Runtime[s] Sup Optimum found
Zou et al. [10] 2009 GPU-

SPSO
C L

ring
S 1 400-2800 fSp, fgRa (-10,10), fgGr,

fgRo (-10,10)
50, 100,
150, 200

13- 370 3.8-11.4 fSp, fgGr (D<100) GForce 8600GT

Veronose et al. [11] 2009 - C G S 1 100-1000 fgSw2.6, fgRa, fAc, fgGr,
fP8, fP16

100 2.7-340 5.4-22.3 ? GTX 280

Wang [12] 2009 GPSO ? ? ? 1 100-1mln fSp (-5.12,-5.12), fSp
(shifted), fgRa, fAc, fgGr,
fgRo (-10,10) , fSw +5 others

100 <1 – 100 2-270 fSp, fSp (shifted) Tesla C 1060

Laguna-Sanchez et
al. [13]

2009 - W L S 1 60-1024 fgGr, fgRa, fgRo 30, 60, 120 6.6 – 200 1-28 Always over 30000
generations

GForce 8600GT

Mussi et al. [14] 2009 CUDAPS
O

St L
ring

S 1,2,3 ? fgRa 1-100 0.25-0.5 1-50 ? GForce 8800GT

Zhou et al. [15] 2010 PSO-TM C L
ring

S 1 1024 -
8192

fEl, fRa (-10,10), fAc, fgRo (-
10,10) + 25 other

30 1.4 – 53.7 7.2 – 25.5 fEl, fAc, fRos Geforce 9800GT

Mussi et al. [16] 2011 Ring PSO

W L
ring

S 1 32 fSp, fgRa, fgRo, 1-120 0.1-21.7 8-138 fSp (D<100), fgRa
(D<20), fgRo (D<10)

Geforce: EN8800GT,
GTX260AMP; Quadro
FX5800

SyncPSO W L
ring

A 1-112 32, 64,
128

fgRa 1-9 0.02-0.35 7-30 ? Geforce EN8800GT

Mussi et al. [17] 2011 - W L
ring

A 1-112 27, 32 fSp, fSw1.2, fgRo, fgRa,
fgGr

1-120 0.02-0.35 2-250 fSp, fSw1.2 (D<1120),
fgRa (D<20), fgRo
(D<10), fgGr (D<5)

Geforce GTX260AMP
Geforce GTS450

Cardenas-Montes
et al. [18]

2011 - ? ? ? 1 20 fSw1.2 1000-15000 4.5-130.9 1.8-20.7 No GeForce GTX295

Cardenas-Montes
et al. [19]

2011 - St G S 1 20 fSw1.2 20000 ? 20.4-26.7 ? GTX 295
43.3-43.8 ? TESLA C2050

Zhou et al. [20] 2011 GPU-
PSO

C L
ring

S 1 512-1280 fSp, fgRa (-10,10), fgGr,
fgRo (-10,10)

50-200
1000, 2000

1.17-128.2 2.7 – 39.7 fSp (D=50), fgGr
(D=50,100)

NVIDIA Geforce
9800GT

Hung et al. [21] 2012 GPSO W G S 1 16 -
1048576

fSp (-5.12,-5.12), fSp
(shifted), fgRa, fAc, fgGr,
fgRo (-10,10) , fSw +5 others

100 <1 – 100 1-270 fSp, fSp (shifted), fAc,
fgGr

Tesla C1060

Cagnoni et al. [22] 2012 - W L
ring

S 1 32-8192 fSp, fgRa, fSw1.2 , fgRo,
fgGr

32, 64, 128 0.1-10 1-6 ? GT-540M
GTX-560Ti

Calazan et al. [23] 2012 - W G S 7-224 32-1024 fSp, fgGr, fRa (-10,10) 30 0.38-1.13 ? fSp , fGri, fRas (error <
0.011)

GeForce GTX 460

Roberge et al. [24] 2012 CUDA-
PSO

W G S 1 256-
16384

normalized fgRo 20 ? 20-256 ? GTXS60Ti

Roberge et al. [25] 2012 parallel
PSO

W G S 1 256-
16384

normalized fgRo 20 0.1-100 20-215 ? GTX560Ti

Calazan et al. [26] 2013 PDPSO W L
ring

S 1 6-1024 fSp, fSw, fgRo (-16,16), 2-256 0.05-9 1-81.5 fSp, fSw, (both error <
0.0001) fgRo (D<256)

GeForce GTX 460

Calazan et al. [27] 2013 CPPSO W L
ring

S 2,4 4-256 fSp, fSw, fgRo (-16,16), fgRa 2-256 0.02->1 1-81.5 fSp , fSw (both error <
0.0001) fgRo (D<128),
fgRa (D<16)

GeForce GTX 460

Kumar et al. [28] 2013 - W G S 16-
224

500,100,
1500

Shifted: fSp, fEl, fgRa, fgRo,
fAc

1000 96-1211 9-60 fSp, fEl, fgRa, fAc Tesla M-2070

Name – algorithm name, V- variants of the velocity calculation: St – standard PSO, W – PSO with the inertia weight, C – canonical PSO; N – neighborhood topology: G, L – Gbest and Lbest respectively, S –

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 352
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

synchronous PSO, A – asynchronous PSO, M – number of swarms, Sup –Speedup ratio; ?- no data available

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 353
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 3 PSO GPU implementations tested on real-world optimization problems or other test functions by publication date.

 PSO Experiments

References Year Variant Swarm
size Objective function Problem description Sup GPUs V N S M

Mussi et al.
[29]

2009 St L
ring

S 1 64 Weighted Bhattacharyya coefficients in 3
channels HSV color space.

Road sign detection in Advanced Driving Assistance Systems, which takes
into account shape and color to detect signs. PSO estimate the pose of the
sign in the 3D space and the position of the sign in the image.

15 Gforce
8800GT

Mussi et al.
[30]

2010 Wt ? S 1 10 Compares the silhouettes generated by the
model with the silhouettes extracted from
images.

Marker-less full-body articulated human motion tracking system from
multi-view video sequences acquired in a studio environment. Detecting
location, orientation and scale of each body part.

20 Quadro FX
5800

Solomon et al.
[31]

2011 W G A 1-
60

128 Max Machine Available Time (MAT): the
total amount of time required by the
machine to complete all tasks.

Task matching/mapping problem: composed of two distinct components:
1. The set of tasks, T, to be mapped, and, 2. The set of machines, M, which
tasks can be mapped to. A discrete PSO was also tested.

32 Geforce
GTX260AMP

Wachowiak
et al. [32]

2012 Wt G S 1 500-
4000

Toy protein folding function (3D), logistic
function (2D), disequilibrium function
(8D)

Three problems: Toy protein folding, realistic two-dimensional logistics
problem: it is a maximum likelihood estimator; disequilibrium problem in
econometrics concerns determining the supply and demand components of
a time series of transacted quantities

298 Tesla S1070

Datta et al.
[33]

2012 C G S 1 256-
1024

Self Potential model (5D), Magnetic Model
(4D), Resistivity Model (2D)

Geology – invert Self Potential (Surda Area of Jharkhand, India), Magnetic
(anomaly of Boston Township) and Resistivity (Satkui) models.
Optimization of model parameters.

22 NVIDIA
9200M GS

Nobile et al.
[34]

2012 W G S 3,
4

32 Distance between the sampled in the
experiment biochemical species, and a
simulated dynamics from stochastic
simulation algorithm.

Estimation of the stochastic constants of two simple systems: the Michaelis-
Menten kinetics (2D) and a prokaryotic auto-regulatory gene network (6D)

24 Tesla C1060

Platos et al.
[35]

2012 W ? ? ? 4-10240 Combination of precision and recall
(classification measures)

Document classification form data-sets: Reuters-21578, Iris collection, 20
Newsgroup with different number of tokens.

10.5 Tesla C2050

Rabinovich et
al. [36]

2012 St G S 2-? 256-
28160

Optimize the sum of the priorities of the
signals that fall within the placement of
the three receivers/jammers (3x48D)

Radio Frequency Resource Allocation Optimizer – allocation of radio
frequency resources with constraints of bandwidth and power.

5 GeForce GTX
465

Reguera-
Salgado et al.
[37]

2012 C L S 1 50 Minimum Root Mean Square
Error (RMSE) of the differences between
the GCPs and associated projected pixels
locations. (6D)

Geocorrection – PSO is used to find the set of corrections of the navigation
data that produces the best match between the projected pixels and the
Ground Control Point. Used for digital airborne pushbroom images (Cies
Islands) to Digital Terrain Models.

time
20s-
220s

GeForce
9500GT

Roberge et al.
[24]

2012 W G S 1 32-512 Harmonic minimization in multilevel
inverters (2D).

Problem of optimal switching angles to reduce or eliminate harmonics in
multilevel inverters. For some given circuit the optimal angles to control the
DC sources and generate a current while minimizing harmonic.

115 GTXS60Ti

Roberge et al.
[25]

2012 W G S 1 32-256 Distance between the virtual marker
projected on the 2D image and the actual
marker identified on the 2D image

High-speed camera on the aircraft records multiple bomb drops as 2D
video images. Bomb’s position in 3D is obtained from 2D image. Problem: 6
degrees of freedom (6DOF) (x, y, z, yaw, pitch, and roll).

140 GTX560Ti

Rymut et al.
[38]

2013 W G S 1 100-400 An overlap between person silhouette and
3D model + image to camera edge
distance (4 cameras)

Marker-less body human motion tracking system – recovery of humane
pose. Combination of Particle Filter and PSO. Result: 16 frames/s

7.5 GeForce
590GTX

Zhang et al.
[39]

2013 C L
ring

S 1 128 Minimize error: the sum of the differences
(distances) in two models for every
sampling set (31D)

Marker-less 3D articulated human motion tracking system. Searching of the
optimal pose is the hybrid of important sampling (Monte Carlo method)
and niching PSO. PSO resampled after M generations.

30 GeForce GTX
295

Rymut et al.
[40]

2014 W G S 1 100-
1000

An overlap between person silhouette and
3D model + image to camera edge
distance (4 cameras)

Real-time body human motion tracking system – recovery of humane pose.
3D model has 26 DOF. Fitness function is decomposed. Result: 12 frames/s

12 GeForce
590GTX

Ma et al. [41] 2014 W G S 1 64-2560 The difference between the measured data
and the calculated current is gradually
minimized

Extract and estimate the parameters of a photovoltaic (PV) model. The
single diode model (SDM) with five parameters: photocurrent, saturation
current, diode ideality constant, series resistance, and shunt resistance, that

80 GTX760

30 9400M

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 354
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

need to be estimated was used.
Van Heerden
et al. [42]

2014 W L
ring

S 1 1024 Minimum of Euclidean distance from the
goal plus penalty.

Optimization of model predictive control: continuous non-linear dynamic
system of the Acrobot motion control. The particles re-sampling in the area
of previous best is used.

8.3 GeForce GTS
450

V- variants of the velocity calculation: St – standard PSO, W – PSO with the inertia weight, subindex t-tuned inertia, C – canonical PSO; N – neighborhood topology: G, L – Gbest and Lbest respectively, S –
synchronous PSO, A – asynchronous PSO, M – number of swarms; Sup –Speedup ratio; ?- no data available

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 355
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 4 PSO GPU implementations tested on real-world optimization problems or other test functions by publication date, PSO variants other than in Table 2.

 PSO Experiments

References Year Variant Name Objective function Problem description Sup GPUs

Papadakis et
al. [43]

2011 The gbest component is removed and particles
are attracted by their personal best based on the
learning probability (random value).
Tournament selection chooses better correction.

Comprehens
ive Learning
PSO
(CLPSO)

Minimize sum of incremental
cost function of each unit
penalized by technical
constraints (9-72 D).

Economic Dispatch problem (ED). ED considers
power system, comprising N units. Problem: calculate
the output of each unit so that the total operating cost
is minimized, providing power balance and technical
limit constraints.

36.6 Geforce
GTX 260

Zhu et al.
[44]

2011 The Euclidean interference factor is added into
a inertia weight PSO. It is a sigmoid function.
Its argument is Euclidean distance from a
particle to gbest.

Euclidean
PSO (EPSO)

fSp, fgRo (-30,30), fgRa, fgGr, fAc Standard test function for global optimization.
Functions with (1000≤D≤8000) arguments were tested.

0.7-
16.3

Geforce
GTX 480

Chen et al.
[45]

2012 Personal best attraction is a mutation by 2-
exchange using personal best position.
Analogously global best attracts to its position.

LaPSO
(discrete)

Minimize weighted function that
calculates inner Hamming
distances between points in LHD.

n-run and k-factor Latin hypercube designs (LHDs) –
is a method for generating samples of plausible
collections of parameter values. A sample is the only
one in each k-axis.

59 Tesla
C2070

Sharma et al.
[46]

2012 The confident factor was exchanged by
personal best and global best position ratio and
social ratio was exchanged by market volatility.

Normalized
PSO (NPSO)

Minimize a portfolio value that is
the total estimated cost of the
holdings of the investor.

Financial application: option pricing based on 1)
current stock price, 2) strike price, 3) expiration time,
4) rate of interest and 5) market volatility. The
portfolio is composed of European and American call
and put options.

45 ?

Zhang et al.
[47]

2012 NPSO is a multi-swarm approach. The Velocity
is updated with bare bone rule. The new
position is updated by random diffusion.
Algorithms steps were modified.

Niching
Bare Bone
PSO
(NPSO)

Minimize the sum of error from
all body parts. Hierarchical
optimization.

The body poses tracking in 3D - 3D volumetric
reconstruction of the real-world dynamic scenes.
Searching of the optimal pose is the hybrid of
stochastical generative sampling algorithm and
niching PSO.

30 GeForce
GTX 295

Zhao et al.
[48]

2012 The velocity update with inertia weight was
modified. Beside personal best and global best
positions the best-so-far in sub-swarm
additionally attracts the particle.

Parallel
multi-swarm
PSO

Minimize LS-SVM model. Prediction for gas holder level in the Linz Donawitz
converter gas system based on least square support
vector. The multiple sub-swarms (PSO) optimizes a
model parameters.

65 GeForce
GTX 260

Souza et al.
[49]

2013 Mutation of inertia weight, global best and
cognition and social coefficient is performed,
and then better solutions are selected. Velocity
updates use mutants instead random numbers

Cooperative
Evolutionar
y Multi-
Swarm PSO
(CEMSO)

Minimizing 1) the manufacturing
cost of a steel beam 2) total
weight of speed reducer 3) the
quantity of material

1) Welded Beam Design (WBD): (4D)
2) Speed Reducer Design with 25 restrictions (SRD-25)
(7D).
3) Air Tank Design (ATD): (5D);
All problems with constraints

? GeForce
GT 330M

Kilic et al.
[50]

2013 A logistic transformation is used to accomplish
the velocity vector. A probability of keeping 1
or exchanging to 0 is determined.

Binary PSO
(BPSO)
discrete

1) optimum pixel set of the
impedance (32D) 2) optimize the
height of each layer and the
periodicity of the gratings

1) The optimization for tuning the shape of the
antenna to the user-specified frequency. 2) The
antireflective surface design.

10 4x Tesla
C1060
graphics

Zan et al.
[51]

2014 A logistic transformation is used to accomplish
the velocity vector. A probability of keeping 1
or exchanging to 0 is determined.

Binary PSO
(BPSO)
discrete

Maximum of linear composition
of profit and penalty (64-1024D)

The Multidimensional Knapsack Problem (MKP):
select items from the available set to knapsacks of
limited capacity.

9.6 GeForce
GTX 580

Ouyang et
al. [52]

2014 The velocity update with inertia weight is used.
Hybrid method joining Conjugate gradient
method with PSO. The best particle in PSO is
replaced by best from CGM.

PHPSO Minimize the weighted sum of
problem variables

One dimensional nonclassical heat conduction
equation is modified into linear equation systems then
transformed into an unconstrained optimization
problem, which is optimized by PSO.

21 GTX465
23 Tesla

C2050

?- no data available

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 356
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[17] L. Mussi, Y.S. Nashed, and S. Cagnoni, “GPU-based Asynchronous Particle
Swarm Optimization,” Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’11, New York, NY, USA, pp.1555–
1562, ACM, 2011.

[18] M. Cardenas-Montes, M. Vega-Rodriguez, J. Rodriguez-Vazquez, and A.
Gomez-Iglesias, “Accelerating Particle Swarm Algorithm with GPGPU,”
2011 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp.560–564, Feb 2011.

[19] M. Cardenas-Montes, M.A. Vega-Rodríguez, J. J. Rodríguez-Vázquez, and A.
Gómez-Iglesias, "Effect of the Block Occupancy in GPGPU over the
Performance of Particle Swarm Algorithm." Adaptive and Natural Computing
Algorithms, Springer Berlin Heidelberg, 2011. 310-319.

[20] Y. Zhou and Y. Tan, “Parallel Particle Swarm Optimization Algorithm Based
on Graphic Processing Units”, Handbook of Swarm Intelligence, Series
Adaptation, Learning, and Optimization, Springer Berlin Heidelberg, pp. 133-
154, 2011,

[21] Y. Hung and W. Wang, “Accelerating Parallel Particle Swarm Optimization
via GPU”, Optimization Methods and Software, 27:1, 33-51, 2012

[22] S. Cagnoni, A. Bacchini, and L. Mussi, “OpenCL implementation of Particle
Swarm Optimization: A Comparison Between Multi-Core CPU and GPU
Performances,” Proceedings of the 2012T European Conference on
Applications of Evolutionary Computation, Berlin, Heidelberg, pp.406–415,
Springer-Verlag, 2012.

[23] R. Calazan, N. Nedjah, and L. de Macedo Mourelle, “Swarm Grid: A proposal
for High Performance of Parallel Particle Swarm Optimization Using
GPGPU,” Lecture Notes in Computer Science and Its Applications ICCSA,
vol.7333, pp.148–160, Springer Berlin Heidelberg, 2012.

[24] V. Roberge and M. Tarbouchi, "Efficient Parallel Particle Swarm Optimizers
on GPU for Real-Time Harmonic Minimization In Multilevel Inverters,"
IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, pp.2275,2282, 25-28 Oct. 2012

[25] V. Roberge, and M. Tarbouchi, "Parallel particle swarm optimization on
graphical processing unit for pose estimation." WSEAS Transactions on
Computers, 11.6 (2012): pp. 170-179, 2012

[26] R. Calazan, N. Nedjah, and L. de Macedo Mourelle, “Parallel GPU-based
Implementation of High Dimension Particle Swarm Optimizations,” 2013
IEEE Fourth Latin American Symposium on Circuits and Systems (LASCAS),
pp.1–4, Feb 2013.

[27] R. Calazan, N. Nedjah, and L. de Macedo Mourelle, "A Cooperative Parallel
Particle Swarm Optimization for High-Dimension Problems on GPUs,"
Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence (BRICS-CCI & CBIC), 2013 BRICS Congress on, vol., no.,
pp.356,361, 8-11 Sept. 2013

[28] J. Kumar, L. Singh, S. Paul, "GPU Based Parallel Cooperative Particle Swarm
Optimization Using C-CUDA: A case study," 2013 IEEE International
Conference on Fuzzy Systems (FUZZ), pp.1-8, 7-10 July 2013

[29] L. Mussi, S. Cagnoni, E. Cardarelli, F. Daolio, P. Medici and P.P. Porta, ”GPU
Implementation of a Road Sign Detector Based on Particle Swarm
Optimization”, Evolutionary Intelligence, 3, 3-4, pp. 155-169, 2010, Springer

[30] L. Mussi, S. Ivekovic, and S. Cagnoni. "Markerless Articulated Human Body
Tracking from Multi-View Video with GPU-PSO." Evolvable Systems: From
Biology to Hardware. Springer Berlin Heidelberg, pp. 97-108, 2010.

[31] S. Solomon, P. Thulasiraman, and R. Thulasiram, “Collaborative Multi-Swarm
PSO for Task Matching Using Graphics Processing Units,” Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO
’11, New York, NY, USA, pp.1563– 1570, ACM, 2011.

[32] M.P. Wachowiak and A.E.L. Foster, “GPU-based Asynchronous Global
Optimization With Particle Swarm,” Journal of Physics, Conference
HPCS2012 Series (Vol. 385, No. 1, p. 012012), IOP Publishing, 2012.

[33] D. Datta, S. Mehta, and R.S. Srivastava, “CUDA Based Particle Swarm
Optimization for Geophysical Inversion," 2012 1st International Conference
on Recent Advances in Information Technology (RAIT), pp. 416-420, 15-17
March 2012

[34] M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini, "A GPU-
based Multi-swarm PSO Method for Parameter Estimation in Stochastic
Biological Systems Exploiting Discrete-time Target Series." Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, Springer
Berlin Heidelberg, pp. 74-85, 2012.

[35] J. Platos, V. Snasel, T. Jezowicz, P. Kromer, and A. Abraham, "A PSO-based
Document Classification Algorithm Accelerated by the CUDA Platform,"
2012 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp.1936,1941, 14-17 Oct. 2012

[36] M. Rabinovich, P. Kainga, D. Johnson, B. Shafer, J.J. Lee, R. Eberhart,
"Particle Swarm Optimization on a GPU," 2012 IEEE International
Conference on Electro/Information Technology (EIT), pp.1-6, 6-8 May 2012

[37] J. Reguera-Salgado and J. Martin-Herrero, "High Performance GCP-based
Particle Swarm Optimization of Orthorectification Of Airborne Pushbroom
Imagery," 2012 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp.4086-4089, 22-27 July 2012

[38] B. Rymut, B. Kwolek, and T. Krzeszowski. "GPU-Accelerated Human Motion
Tracking Using Particle Filter Combined with PSO." Lecture Notes in
Computer Science, Advanced Concepts for Intelligent Vision Systems, Springer
International Publishing, vol. 8192, pp. 426-437, 2013

[39] Z. Zhang, H. S. Seah, C. K. Quah and J. Sun, “GPU-accelerated Real-Time
Tracking Of Full-Body Motion With Multi-Layer Search." IEEE Transactions
on Multimedia, vol. 15, no. 1, pp. 106-119, 2013.

[40] B. Rymut, and B. Kwolek. "Real-time multiview human pose tracking using
graphics processing unit-accelerated particle swarm optimization”,
Concurrency and Computation: Practice and Experience, DOI:
10.1002/cpe.3329, 2014

[41] J. Ma; K.L. Man; T.O. Ting, N. Zhang; S. Guana and P.W.H Wong,
"Accelerating Parameter Estimation for Photovoltaic Models via Parallel
Particle Swarm Optimization," 2014 International Symposium on Computer,
Consumer and Control (IS3C), pp.175,178, 10-12 June 2014

[42] K. Van Heerden, Y. Fujimoto, and A. Kawamura, "A Combination of Particle
Swarm Optimization and Model Predictive Control on Graphics Hardware for
Real-Time Trajectory Planning of the Under-Actuated Nonlinear Acrobot,"
IEEE 13th International Workshop on Advanced Motion Control (AMC), pp.
464-469, 14-16 March 2014

[43] S.E. Papadakis, and A.G. Bakrtzis, "A GPU Accelerated PSO with
Application to Economic Dispatch Problem," 2011 16th International
Conference on Intelligent System Application to Power Systems (ISAP), pp.1,6,
25-28 Sept. 2011

[44] H. Zhu, Y. Guo, J. Wu; J. Gu and K. Eguchi, "Paralleling Euclidean Particle
Swarm Optimization in CUDA," 2011 4th International Conference on
Intelligent Networks and Intelligent Systems (ICINIS), pp.93,96, 1-3 Nov. 2011

[45] R.B. Chen, D. Hsieh, Y. Hung, and W. Wang, "Optimizing Latin Hypercube
Designs by Particle Swarm." Statistics and Computing, vol. 23, no. 5, pp. 663-
676, 2012.

[46] B. Sharma, R.K. Thulasiram, and P. Thulasiraman, "Portfolio Management
Using Particle Swarm Optimization on GPU," 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications (ISPA),
pp.103,110, 10-13 July 2012

[47] Z. Zhang and S.S. Hock, "CUDA Acceleration of 3D Dynamic Scene
Reconstruction and 3D Motion Estimation for Motion Capture," 2012 IEEE
18th International Conference on Parallel and Distributed Systems (ICPADS),
pp.284,291, 17-19 Dec. 2012

[48] J. Zhao, W. Wang, W. Pedrycz, and T. Xiangwei, "Online Parameter
Optimization-Based Prediction for Converter Gas System by Parallel
Strategies," IEEE Transactions on Control Systems Technology, vol.20, no.3,
pp.835,845, May 2012

[49] D. L. Souza, O. N. Teixeira, , D. C. Monteiro and R. C. L. de Oliveira, "A
New Cooperative Evolutionary Multi-Swarm Optimizer Algorithm Based on
CUDA Architecture Applied to Engineering Optimization.", Combinations of
Intelligent Methods and Applications, Springer Berlin Heidelberg, pp. 95-115,
2013

[50] O. Kilic, E. El Araby, Q. Nguyen, and V. Dang, “Bio-inspired Pptimization for
Electromagnetic Structure Design Using Full-Wave Techniques on GPUs.
International Journal of Numerical Modelling: Electronic Networks, Devices
and Fields, vol. 26, no. 6, pp. 649-669, 2013

[51] D. Zan, J. Jaros, "Solving the Multidimensional Knapsack Problem Using a
CUDA Accelerated PSO," 2014 IEEE Congress on Evolutionary Computation
(CEC), pp. 2933-2939, 6-11 July 2014

[52] A. Ouyang, Z. Tang, X. Zhou, Y. Xu, G. Pan and K. Li, “Parallel Hybrid PSO
with CUDA for lD Heat Conduction Equation”, Computers & Fluids (2014),
Available online 28 May 2014,

[53] C. Cresswell-Miley and N. Kourosh. "A Stepwise Multi-centroid
Classification Learning Algorithm with GPU Implementation." Simulated
Evolution and Learning. Springer International Publishing, pp. 347-358, 2014.

IJSER

http://www.ijser.org/
http://dx.doi.org/10.1002/cpe.3329

	1 Introduction
	2 PSO algorithm variants
	2.1 Standard PSO
	2.2 Velocity update
	2.3 Neighborhood topology
	2.4 Multi-swarms PSO
	2.5 Synchronous and asynchronous PSO

	3 Objective functions
	4 Categories
	5 Literature organization
	5.1 Guidelines on table reading
	5.2 General information
	5.3 Test environment
	5.4 Experimental results

	6 Conclusions
	References

